合作客戶/
拜耳公司 |
同濟(jì)大學(xué) |
聯(lián)合大學(xué) |
美國(guó)保潔 |
美國(guó)強(qiáng)生 |
瑞士羅氏 |
相關(guān)新聞Info
-
> 不同溫度下水波波速和表面張力系數(shù)的關(guān)系與計(jì)算方法【實(shí)驗(yàn)】(二)
> 海洋環(huán)境表面活性物質(zhì)來(lái)源及對(duì)海洋飛沫氣溶膠數(shù)濃度、粒徑分布、理化性質(zhì)的影響(二)
> 氣溶膠固定劑PAM-b-PVTES合成路線及GPC、DSC、表面張力等性能測(cè)試(三)
> 新型陽(yáng)離子黏土穩(wěn)定劑防膨、絮凝及表面張力的性能測(cè)試
> 不同濃度下白糖、紅糖溶液的表面張力系數(shù)變化
> FYXF-3煤粉懸浮劑潤(rùn)濕吸附性能、?傷害性能及在煤層氣壓裂改造現(xiàn)場(chǎng)的實(shí)施方案(三)
> 油藏環(huán)境中離子強(qiáng)度與類型、溫度對(duì)烷基苯磺酸鹽溶液油水界面張力的影響
> 微膠囊聚合物溶液對(duì)延展型表面活性劑界面張力的影響(三)
> 連接基對(duì)3種表面活性劑GSS271、GSS371和GSS471動(dòng)態(tài)表面性能的影響(上)
> 液體界面的表面張力和界面張力的測(cè)量方法
推薦新聞Info
-
> ?90%實(shí)驗(yàn)室不知道:表面張力儀讀數(shù)誤差的隱秘來(lái)源與終極解決方案
> 基于LB膜技術(shù)制備膠原蛋白肽覆層羥基磷灰石的新方法——結(jié)果與討論、結(jié)論
> 基于LB膜技術(shù)制備膠原蛋白肽覆層羥基磷灰石的新方法——摘要、材料與方法
> 離子組成、pH值對(duì)納米SiO2/SDS體系降低油水界面張力的影響(三)
> 離子組成、pH值對(duì)納米SiO2/SDS體系降低油水界面張力的影響(二)
> 離子組成、pH值對(duì)納米SiO2/SDS體系降低油水界面張力的影響(一)
> 豬肉、雞肉和魚肉肌漿蛋白油-水界面性質(zhì)、氨基酸組成、蛋白質(zhì)構(gòu)象研究(三)
> 豬肉、雞肉和魚肉肌漿蛋白油-水界面性質(zhì)、氨基酸組成、蛋白質(zhì)構(gòu)象研究(二)
> 豬肉、雞肉和魚肉肌漿蛋白油-水界面性質(zhì)、氨基酸組成、蛋白質(zhì)構(gòu)象研究(一)
> 雙子型起泡劑ULT-1的分子結(jié)構(gòu)式、表面張力、抗溫/抗鹽性能及煤樣潤(rùn)濕性變化——結(jié)果與討論、結(jié)論
表面張力再思考
來(lái)源:李傳亮 瀏覽 1354 次 發(fā)布時(shí)間:2022-08-16
科學(xué)是思想的產(chǎn)物,對(duì)科學(xué)問(wèn)題多思考一下沒(méi)壞處。表面張力,也叫表面自由能,教材上的解釋是,液體內(nèi)部的分子受力平衡,而位于界面上的分子受力不平衡,當(dāng)把液體分子A從內(nèi)部移動(dòng)到界面時(shí)需要做功,因此,界面上的分子比內(nèi)部的分子能量多,多余的能量就是表面自由能。
液體不能單獨(dú)存在,上面還會(huì)有氣體,氣體分子對(duì)液體分子的吸引力小,液體分子對(duì)氣體分子的吸引力大。若把液體內(nèi)部的分子A移動(dòng)到界面需要做功,那么,把氣體內(nèi)部的分子B移動(dòng)到邊界也需要做功嗎?把界面上的分子移動(dòng)到液體內(nèi)部就不需要做功嗎?
實(shí)際上,氣體分子的能量比液體分子高,液體變成氣體需要吸收能量,氣體變成液體需要釋放能量。根據(jù)下圖右側(cè)的能量曲線,界面上的分子并沒(méi)有多余的能量,只是介于氣液能量之間,怎么能說(shuō)界面上有多余的能量呢?
界面張力或表面張力,從受力分析上可能更容易理解。松弛狀態(tài)下的界面不受力,界面張力為0,界面受到拉伸時(shí)界面張力增大。也就是說(shuō),界面張力不是常數(shù),而是一個(gè)變量,就像彈簧的受力狀態(tài)一樣。受力后分子間距增大,儲(chǔ)集了一部分彈性能。分子間的吸引力越大,界面張力肯定也就越大。
在水中加入表面活性劑為何會(huì)降低界面張力?水分子屬于極性物質(zhì),靠氫鍵凝聚在一起。表面活性劑為兩性分子,一端為極性端,另一端為非極性端。加入水中的表面活性劑分子會(huì)聚集在界面上定向排列,極性端伸入水中,非極性端伸入氣中。非極性端占據(jù)了一部分界面面積,致使界面上分子間的吸引力減弱,從而降低了界面張力。這種情況下界面受到的拉伸作用不是很強(qiáng),水驅(qū)油過(guò)程就是如此。
但是,當(dāng)界面受到強(qiáng)大的拉伸作用被拉成薄膜甚至是單分子層時(shí),界面上的分子排列方式也發(fā)生了變化,大分子順層排列,增強(qiáng)了界面的強(qiáng)度,也提高了界面張力的數(shù)值,就如同給水泥加了鋼筋一樣。這大概就是泡泡為何風(fēng)吹不破的原因吧。