狠狠的干性视频,欧美顶级metart裸体全部自慰,乱子伦一区二区三区,十四以下岁毛片带血a级

芬蘭Kibron專注表面張力儀測量技術(shù),快速精準測量動靜態(tài)表面張力

熱線:021-66110810,66110819,66110690,13564362870 Email: info@vizai.cn

合作客戶/

拜耳公司.jpg

拜耳公司

同濟大學

同濟大學

聯(lián)合大學.jpg

聯(lián)合大學

寶潔公司

美國保潔

強生=

美國強生

瑞士羅氏

瑞士羅氏

當前位置首頁 > 新聞中心

合成脂質(zhì)體類姜黃素納米粒子的自組裝——結(jié)論、致謝!

來源:上海謂載 瀏覽 1149 次 發(fā)布時間:2021-11-18

四、結(jié)論


核-殼納米顆粒(或粘土結(jié)構(gòu))的穩(wěn)定自組裝形成,姜黃素位于核中,納米粘土位于電暈中。粒子的典型尺寸為150 nm,表面帶負電(zeta電位~25 mV)。通過zeta電位(如圖3所示)、自組裝系統(tǒng)的能量(如圖5(B)和6(B)所示)、20天內(nèi)的恒定DLS計數(shù)率(如ESI?中的圖S3所示),確認顆粒(由0.05%納米粘土形成)的穩(wěn)定性,以及20天后拍攝的SEM圖像的類似粒度分布(如ESI?中的圖S4所示)。組裝證明了疏水(核)和親水(殼)粒子與軟可調(diào)界面區(qū)共存。自組裝的主要原因是姜黃素納米顆粒之間的主要吸引力和納米粘土片提供的排斥力之間的復雜平衡。疏水區(qū)和親水區(qū)之間的界面區(qū)域在形成和穩(wěn)定過程中起著關(guān)鍵作用。它充分平衡了排斥屏障與姜黃素納米顆粒中普遍存在的疏水吸引力(如圖5(A)和6(A)所示),這阻止了姜黃素納米顆粒的聚集并導致粘粒組裝的形成。一些粘土顆粒的自組裝被發(fā)現(xiàn)對納米粘土團的大小很敏感,因為它調(diào)節(jié)了系統(tǒng)中的排斥力。對于這些結(jié)構(gòu)的穩(wěn)定形成,存在一個臨界閾值大小的納米粘土團簇(L<80nm和s<100nm)。隨著粘土顆粒自組裝電位的增大,一些粘土顆粒的自組裝電位降低。簡言之,我們最終證明,即使在沒有任何表面活性劑的情況下,當相互作用力被調(diào)整以引起微妙的平衡時,在無機粘土血小板存在的情況下也可以形成脂質(zhì)體樣結(jié)構(gòu)或穩(wěn)定的姜黃素納米粒。所形成的粘粒結(jié)構(gòu)在生物物理學領(lǐng)域可能有不同的應用。粘土小體組件預計對系統(tǒng)的pH值敏感,因此它可能適用于將裝載在堆芯中的貨物運送到目標位置。

圖6足跡直徑對粘粒組件的影響。(A) 作為界面區(qū)域厚度函數(shù)的能量變化(L?60 nm,T?298 K,f?0.5,姜黃素納米顆粒半徑R?50 nm,疏水衰減長度x0?1 nm,界面張力?40 mN m-1)。(B) 粘粒–粘粒相互作用作為粒間分離D的函數(shù),使用方程(5)計算。對于更大的封裝外形直徑,能量最小值變得更深,對于大于100 nm的s,能量最小值變得更有吸引力。


致謝


這項工作得到了尼赫魯大學授予NP的訪客獎學金的支持。NP和KR承認印度政府科學技術(shù)部的激勵教員獎。我們感謝Akanksha Sharma博士在該大學高級研究儀器設備的SEM測量方面提供的幫助。NP感謝Matthias Weiss教授的實驗室設施和有用的討論。


參考


1 Y. Gao, C. Berciu, Y. Kuang, J. Shi, D. Nicastro and B. Xu, ACS Nano, 2013, 7, 9055–9063.


2 G. Helgesen, E. Svasand and A. T. Skjeltorp, J. Phys.: Condens. Matter, 2008, 20, 204127, DOI: 10.1088/0953-8984/20/20/ 204127.


3 M. Grzelczak, J. Vermant, E. M. Furst and L. M. Liz-Mirzan, ACS Nano, 2010, 4, 3591–3605.


4 A. K. Boal, F. Ilhan, J. E. DeRouchey, T. Thurn-Albrecht, T. P. Russell and V. M. Rotello, Nature, 2000, 404, 746–748.


5 Y. Xia, T. D. Nguyen, M. Yang, B. Lee, A. Santos, P. Podsiadlo, Z. Tang, S. C. Glotzer and N. A. Kotov, Nat. Nanotechnol., 2011, 6, 580–587.


6 G. M. Whitesides and B. Grzybowski, Science, 2002, 295, 2418.


7 E. E. Meyer, K. J. Rosenberg and J. Israelachvili, PNAS, 2006, 103, 15739–15746.


8 N. I. Lebovka, Adv. Polym. Sci., 2014, 255, 57–96.


9 A. S. Iglesias, M. Grzelczak, T. Altantzis, B. Goris, J. PerezJuste, S. Bals, G. V. Tendeloo, G. V. Stephan, H. Donaldson Jr, B. F. Chmelka, J. N. Israelachvili and L. M. Liz-Marzan, ACS Nano, 2012, 12, 11059–11065.


10 A. Laouini, C. Jaafar-Maalej, I. Limayem-Blouza, S. Sfar, C. Charcosset and H. Fessi, J. Colloid Sci. Biotechnol., 2012, 1, 147–168.


11 T. M. Allena and P. R. Cullis, Adv. Drug Delivery Rev., 2013, 65, 36–48.


12 M. J. Ostro and P. R. Cullis, Am. J. Hosp. Pharm., 1989, 46, 1576–1587.


13 A. Samad, Y. Sultana and M. Aqil, Curr. Drug Delivery, 2007, 4, 297–305.


14 P. da Silva Malheiros, D. J. Daroit and A. Brandelli, Trends Food Sci. Technol., 2010, 21, 284–292.


15 Z. Nie, A. Petukhova and E. Kumacheva, Nat. Nanotechnol., 2010, 5, 15–25.


16 E. Busseron, Y. Ruff, E. Moulin and N. Giuseppone, Nanoscale, 2013, 5, 7098–7140.


17 M. Rad-Malekshahi, L. Lempsink, M. Amidi, W. E. Hennink and E. Mastrobattista, Bioconjugate Chem., 2016, 27, 3–18.


18 R. M. Gorgoll, T. Tsubota, K. Harano and E. Nakamura, J. Am. Chem. Soc., 2015, 137, 7568–7571.


19 W. Lewandowski, M. Fruhnert, J. Mieczkowski, C. Rockstuhl and E. G′orecka, Nat. Commun., 2015, DOI: 10.1038/ ncomms7590.


20 M. M. Yallapu, M. Jaggi and S. C. Chauhan, Curr. Pharm. Des., 2013, 19, 1994–2010.


21 Y. Manolova, V. Deneva, L. Antonov, E. Drakalska, D. Momekova and N. Lambov, Spectrochim. Acta, Part A, 2014, 132, 815–820.


22 P. Anand, A. B. Kunnumakkara, R. A. Newman and B. B. Aggarwal, Mol. Pharm., 2007, 4, 807.


23 H. Hatcher, R. Planalp, J. Cho, F. M. Torti and S. V. Torti, Cell. Mol. Life Sci., 2008, 65, 1631.


24 Y. Zhang, C. Yang, W. Wang, J. Liu, Q. Liu, F. Huang, L. Chu, H. Gao, C. Li, D. Kong, Q. Liu and J. Liu, Sci. Rep., 2016, 6, 1– 12.


25 X. Yang, Z. Li, N. Wang, L. Li, L. Song, T. He, L. Sun, Z. Wang, Q. Wu, N. Luo, C. Yi and C. Gong, Sci. Rep., 2015, 5, 1–15.


26 D. Wang, S. M. Veena, K. Stevenson, C. Tang, B. Ho, J. D. Suh, V. M. Duarte, K. F. Faull, K. Mehta, E. S. Srivastan and M. B. Wang, Clin. Cancer Res., 2008, 14, 6228–6236.


27 V. Gupta, A. Aseh, C. N. Rios, B. B. Aggarwal and A. B. Mathur, Int. J. Nanomed., 2009, 4, 115–122.


28 R. K. Das, N. Kasoju and U. Bora, Nanomedicine, 2010, 6, 153– 160.


29 S. Bisht, G. Feldmann, S. Soni, R. Ravi, C. Karikar, A. Maitra and A. Maitra, J. Nanobiotechnol., 2007, 5, 3–21.


30 Y. He, Y. Huang and Y. Cheng, Cryst. Growth Des., 2010, 3, 1021–1024.


31 Bhawana, R. K. Basniwal, H. S. Buttar, V. K. Jain and N. Jain, J. Agric. Food Chem., 2011, 59, 2056–2061.


32 N. Pawar and H. B. Bohidar, Colloids Surf., A, 2009, 333, 120– 125.


33 B. Ruzicka, E. Zaccarelli, L. Zulian, R. Angelini, M. Sztucki, A. Moussaid, T. Narayanan and F. Sciortino, Nat. Mater., 2011, 10, 56–60.


34 R. K. Pujala, Dispersion Stability, Microstructure and Phase Transition of Anisotropic Nanodiscs, Springer Thesis, 2014, DOI: 10.1007/978-3-319-04555-9.


35 A. Faghihne jad and H. Zeng, Langmuir, 2013, 29, 12443– 12451.

合成脂質(zhì)體類姜黃素納米粒子的自組裝——摘要、介紹

合成脂質(zhì)體類姜黃素納米粒子的自組裝——材料和方法

合成脂質(zhì)體類姜黃素納米粒子的自組裝——結(jié)果和討論

合成脂質(zhì)體類姜黃素納米粒子的自組裝——結(jié)論、致謝!

无码精品久久一区二区三区| 久久久SS麻豆欧美国产日韩| 亚洲爆乳精品无码AAA片| 1区2区3区产品乱码免费| 色婷婷综合久久久久中文| 日韩中文字幕在线一区二区三区| 亚洲成AV人无码中文字幕| 国产成A人亚洲精V品无码性色| 国产精品秘入口18禁麻豆免会员| 中文字幕亚洲无线码A| 亚洲AV无码一区二区三区DV| 宅男噜噜噜66网站在线观看| 乱子真实露脸刺激对白| 久久久久精品无码一区二区三区| 亚洲中文字幕无码天然素人| 小明成人永久免费视频在线观看| 色屁屁WWW影院免费观看入口| 久久精品亚洲一区二区三区浴池| 亚洲国产成人AV片在线播放| 女人被狂C到高潮视频网站| 无码日韩做暖暖大全免费不卡| 九九爱WWW人成免费网| 国产成人精品午夜福利| 2019亚洲午夜无码天堂| 欧美饥渴熟妇高潮喷水| 999久久久精品国产消防器材| 国产精品免费精品自在线观看| 羞羞午夜爽爽爽爱爱爱爱人人人| 被黑人猛躁10次高潮视频| 亚洲AV综合伊人AV一区加勒比| 成人H在线无码精品动漫网站| 国产精品无码不卡一区二区三区| 麻豆产精国品一二三产区区| 无码丰满少妇2在线观看| 亚洲a∨无码一区二区三区| 亚洲色无码专区一区| 亚洲精品成人A在线观看| 国产又爽又粗又猛的视频| 亚洲AV人无码激艳猛片| 日本一区二区三区免费播放视频站| 亚洲av男人的天堂在线观看|